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APPENDIX K 
Intervals and Limits 

 
K-1.  Introduction.  Statistics can be divided into two categories: estimation theory (descriptive 
statistics) and hypothesis testing (inferential statistics). Estimation theory includes calculating 
confidence intervals as estimates for population parameters, while hypothesis testing focuses on 
the use of statistical tests to accept or reject hypotheses concerning these parameters.  
 
K-2.  Types of Statistical Intervals.  Three types of statistical intervals are often constructed on 
data: confidence intervals, tolerance intervals, and prediction intervals. A confidence interval is 
designed to contain the specified population parameter, such as the mean, with a specified level 
of confidence. A confidence interval for the mean, for example, gives information about the av-
erage concentration level but offers little information about the highest or most extreme sample 
concentrations that are likely to be observed. In such cases, tolerance or prediction intervals are 
more appropriate. A confidence interval contains a parameter of interest, while a tolerance inter-
val contains a proportion of the population, and a prediction interval contains one or more future 
observations. Statistical intervals are dependent upon distributional assumptions. Parametric and 
nonparametric methods for deriving intervals are also available. However, some nonparametric 
intervals, such as the tolerance interval, require a large number of observations to provide a rea-
sonable coverage and confidence level. More information about statistical intervals can be found 
in Hahn and Meeker (1991). 
 
 K-2.1.  Confidence Interval.  It is often desirable to express or quantify the degree of uncer-
tainty for some estimate of an unknown population parameter. The most common type of inter-
val estimate is a confidence interval. A confidence interval is essentially an estimate for an 
unknown population parameter expressed as a range of values with some specified level of con-
fidence. The level of confidence describes the probability that the “interval will capture the true 
parameter in repeated samples” (Moore, 1999). 
 
 K-2.1.1.  The values at each end of the interval are called confidence limits. The lower 
value is the lower confidence limit (LCL) and the upper value is the upper confidence limit 
(UCL). The calculation of a confidence limit depends on the sampling distribution. Confidence 
limits are readily calculated for normally distributed data. A two-sided confidence interval for 
some population parameter, , will be a closed interval of the form Θ ba ≤Θ≤ , where a is the 
lower limit and b is the upper limit. An upper one-sided confidence interval will be of the form 

and a lower one-sided confidence interval will be of the form b≤Θ a≥Θ . 
 
 K-2.1.2.  For environmental work, it is often desirable to estimate the mean concentration 
of a contaminant in some environmental population (for example, the mean concentration of ar-
senic in a shallow groundwater aquifer). The population mean ( μ ) is often estimated by calcu-
lating the sample mean ( x ) for a set of n measurements. The uncertainty associated with the 
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sample mean (as an estimate of the population mean) would be addressed by constructing a con-
fidence interval for the population mean. A note on terminology: one calculates a confidence in-
terval for a population parameter, such as the population mean, and not for the corresponding 
sample statistic, such as the sample mean (though a statistic such as the sample mean may be 
used to calculate the confidence interval for the population parameter). 
 
 K-2.1.3.  The upper bound of the confidence interval of the population mean, the UCL, is 
most frequently encountered. For example, risk assessments require the 95% UCL for use as the 
reasonable maximum exposure concentration. The UCL of the (population) mean is used for the 
exposure point concentration (EPC) in risk assessments because of the uncertainty associated 
with estimating the population or “true” mean concentration at a site (EPA OB92-963373). Re-
cent EPA guidance directs risk assessors in the possible methods used to calculate an upper con-
fidence limit on the population mean (EPA OSWER 9285.6-10). 
 
 K-2.1.4.  The phrase “95% confidence interval” means that “if one repeatedly calculates 
such intervals from many sets of independent random samples,” 95% of the intervals, “in the 
long run, correctly contain the parameter of interest” (Hahn and Meeker, 1991). In other words, 
if a very large number of 95% confidence limits are calculated for the population mean, ap-
proximately 95% of the intervals (95 intervals out of 100) will contain the population mean. 
“More commonly, but less precisely, a two-sided confidence interval is described by a statement 
such as ‘we are 95% confident that the interval contains the parameter of interest.’ In fact, either 
the observed interval contains the parameter or it does not. Thus the 95% refers to the procedure 
for constructing a statistical interval, and not to the observed interval itself” (Hahn and Meeker, 
1991). Because not all data sets fit a normal distribution, formulas for calculating a lognormal 
and nonparametric confidence limit are also available.  
 
 K-2.1.5.  The EPA recently published OSWER 9285.6-10. According to this latest guid-
ance, calculating a UCL should take into consideration outliers, censored data, and distribution 
testing (as described in Appendices I, H, and E). Once the distribution is determined, the calcula-
tion of an UCL should proceed according to the procedures for distributional methods. If, how-
ever, the site data do not follow a known distribution, then determining a good estimate of the 
UCL is left to the discretion of the risk assessor. Table K-1 presents the methods recommended 
in EPA guidance (OSWER 9285.6-10). Research in the area of UCL calculation is ongoing and 
recommendations may change in the future.  
 
 K-2.2.  Tolerance Interval.  A tolerance interval is designed to contain a specified propor-
tion of the population (or percentile), such as 95% of all possible sample measurements (i.e., the 
95th percentile). Tolerance intervals are essentially confidence intervals around a specified per-
centile. It is rare that a quantile for the population is known; instead, it is estimated using a sam-
ple data set, and a confidence interval for the population quantile is calculated using the sample 
quantile (e.g., just as a confidence interval for the population mean is calculated using the sample 
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mean). Tolerance intervals are usually designed to cover all but a small percentage of the popula-
tion measurements, so observations should rarely exceed a tolerance interval if the observations 
come from a similar distribution.  
 
Table K-1. 
UCL Method Flow Chart 

 
Are data normal? 

 
Yes  → 

 
Use Student’s t 

 
No ↓ 

  

 
Are data lognormal? 

 
Yes  → 

 
Use Land, Chebyshev (MVUE), or Student’s t (with small 
variance and skewness) 

No ↓   
 
Is another distribution appropriate? 

 
Yes  → 

 
Use distribution-specific method (if available) 
 

No ↓   
 

Is sample size large? 
 
Yes  → 

 
Use Central Limit Theorem-Adjusted (with small variance 
and mild skewness) or Chebyshev 

No ↓ 
 
→ 

  
 
Use Chebyshev, Bootstrap Resampling, or Jackknife 
 

 
 K-2.2.1.  A tolerance interval is characterized by two quantities (probabilities): the cover-
age (the proportion of the population that the interval is supposed to contain), and the confidence 
level (the degree of confidence with which the interval reaches the specified coverage). As the 
interval is constructed from sample information, it is also a random interval. Because of sample 
fluctuations, a tolerance interval can contain the specified proportion of the population only with 
a certain confidence level. For example, “the (1 – α)100% tolerance interval with p100% cover-
age” refers to a tolerance interval constructed to contain at least 100p% of the distribution with 
(1 – α)100% level of confidence. 
 
 K-2.2.2.  Upper tolerance limits (UTLs) (UCLs for percentiles) are often calculated for en-
vironmental work. For example, it may be desirable to compare contaminant concentrations in a 
study area to the UTL of the compound in a background area. If the concentrations of many site 
samples exceed the background UTL, site-related contamination probably exists. It is most 
common for environmental scientists to calculate the “95 UTL” (95% upper tolerance limit with 
95% coverage). 
 
 K-2.2.3.  The method for calculating a tolerance interval depends on the nature of the un-
derlying population distribution. Tolerance intervals can be constructed assuming that the data or 
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the transformed data are normally distributed. It is also possible to construct nonparametric toler-
ance intervals using only the assumption that the data come from some continuous population. 
However, nonparametric tolerance intervals often require a large number of observations to pro-
vide a reasonable coverage and are impractical to construct for small sets of data. The data set 
with which tolerance intervals are calculated should be inspected for outliers and tested for nor-
mality before selecting the tolerance interval approach. 
 
 K-2.3.  Prediction Interval.  A prediction interval is a statistical interval calculated to in-
clude one or more future observations from the same population with a specified confidence. A 
prediction interval calculated from some set of sample data is such that all of certain number of 
future measurements (k) from the same population will fall within the interval with some speci-
fied level of confidence. In other words, each k future observation is compared to the prediction 
interval. The interval is constructed to contain all k future observations with the stated confi-
dence. If any future observation exceeds the prediction interval, this is statistically significant 
evidence of a change in conditions. The number of future observations to be collected, k, must be 
specified (i.e., known before calculating the prediction interval). It is desirable to calculate pre-
diction intervals periodically, using the most recent data. (The EPA recommends at least yearly 
for groundwater analyses.) Concentrations of site contaminants are sometimes compared to 
background concentrations using prediction intervals. An upper prediction limit is calculated for 
the next k future observations using the background data set and the k site measurements are then 
compared to the upper prediction limit. If any of the k site measurements exceed the prediction 
limit, this suggests that the site concentrations are elevated with respect to background. 
 
 K-2.3.1.  Prediction intervals are used to achieve some desired tolerance for Type I error 
(i.e., false rejection of H0) when the same statistical test is performed multiple times (e.g., k 
times). (Neither prediction nor tolerance intervals address Type II error.) For example, assume 
that the Type I error rate is α for falsely rejecting the null hypothesis, H0, for some statistical test 
or comparison. Assume that k independent statistical tests or comparisons are performed, where 
α denotes the probability of a false rejection (Type I error rate) for each individual test or com-
parison. The Type I error for the set of k independent comparisons, α*, is the following:  
 
  )1(1* kαα −−=
 
 K-2.3.2.  Consider a single statistical test comparing populations 1 and 2, where H0 is re-
jected at a level of significance α = 0.05. Now, suppose that three, rather than two, populations 
are to be compared to each other using the same α for each comparison; that is, populations 1 
and 2, 2 and 3, and 1 and 3, are compared, where α = 0.05 for each of the k = 3 comparisons. As-
sume that the three populations are identical and all the measurements are independent of one 
another. The probability of rejecting H0 for at least one of the three populations (i.e., the false re-
jection rate for the set of three comparisons) is  
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.  14.0)95.0(1)1(1* 33 =−=−−= αα
 
 K-2.3.3.  Even though the false rejection rate for a single comparison is 0.05, the false re-
jection rate for the set of three comparisons is higher, 0.14. A larger false positive rate will be 
obtained when more than three different populations are being compared. Therefore, if a total 
false rejection rate of α = 0.05 is desired, the false rejection rate for each comparison must be 
less than 0.05. In fact, it can be shown that if a total false rejection rate (also called the experi-
ment wise error rate) of α is desired, then the false rejection rate, α*, for each comparison should 
be approximately α/k: 
 
  . kk k)/1(1*)1(1 ααα −−≈−−=
 
This is called the Bonferroni approximation. For example, if 05.0=α and k = 3, then the Type I 
error for each individual comparison ( *α ) must be approximately 0.05/3 = 0.0167. Note that  
 
  .05.0049.0)3/05.0(1)/1(1 3 ≈=−=−− kkα
 
 K-2.3.4.  Thus, a prediction interval for the next k measurements for the (1 – α)100% level 
of confidence that uses the Bonferroni approximation will entail the use of individual compari-
son with Type I error of α/k. For example, for normally distributed data, the prediction interval 
for (1 – α)100% confidence for the next k observations is obtained from the quantile of the Stu-
dent’s t-distribution t1–α/k (e.g., rather than t1–α). 
 
 K-2.3.5.  It should be noted that, in general, prediction and tolerance intervals are not the 
same thing. The difference between a tolerance and prediction limit is one of interpretation and 
probability. Given n measurements and a desired confidence level, a tolerance interval will have 
a certain coverage percentage. A tolerance interval is designed so that, with some level of confi-
dence, a proportion p of future measurements will fall within the interval. Thus, a small propor-
tion 1 – p of the measures may fall outside the tolerance interval. A prediction limit, on the other 
hand, is designed so that, with some level of confidence, all future measurements fall within the 
interval. In this sense, the prediction limit may be thought of as a 100% coverage tolerance limit 
for the next k future observations. Thus, upper prediction intervals are constructed when all fu-
ture measurements must fall below some threshold value and tolerance intervals are typically 
constructed when only a large proportion of future measurements are required to exceed a 
threshold value. 
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K-3.  Statistical Intervals Based on Normal Distribution. 
 
 K-3.1.  Confidence Interval for the Mean.  For a normal distribution, the one-sided (1 – 
α)100% UCL for the population mean is computed using the sample mean and standard devia-
tion, and the (1 – α) quantile of Student’s t-distribution with n – 1 degrees of freedom: 
 
 ( )1 1 , 1UCL /nx t sα α− − −= + n  . 

 
Quantiles of the Student’s t-distribution for various degrees of freedom are provided in Appendix 
B, Table B-23. Student’s t can also be obtained in Microsoft Excel with the formula 

)1,2( −nTINV α , for a one-sided (upper) ( ) %1001 α− UCL for 1−n

(

degrees of freedom. When 
data are normally distributed, or if there are more than 30 samples available, a normal two-sided 
or one-sided confidence interval for the population mean (μ) with %100)1 α− level of confi-
dence can be computed as directed in the Paragraph K-3.2. An example is provided in Paragraph 
K-3.3.  
 
 K-3.2.  Directions for the Confidence Interval for the Mean (Normal Distribution) When 
the Population Standard Deviation is Unknown.  Let  represent the n data points 
from a normal distribution. These could be either n individual samples or n composite samples 
consisting of k aliquots each. 

nxxx ,,, 21 K

 
 K-3.2.1.  Verify that data come from a normal distribution using tests presented in Appen-
dices F and J such as the Shapiro-Wilk test (Paragraph F-3) and a normal probability plot (Para-
graph J-5.5). 
 
 K-3.2.2.  Calculate the sample mean, x , and the standard deviation, s (Appendix D). 
 
 K-3.2.3.  Use Table B-23 of Appendix B to find the critical value such that %100)1( α−  of 
the t-distribution with  degrees of freedom (df) is below this value. For a one-sided con-
fidence interval (when just a LCL or an UCL is to be calculated), the critical value is the percen-
tile . For a two-sided confidence interval (when both a LCL and UCL are to be calculated), 
the critical value is .  

1−= nv

v,2/α

vt ,1 α−

t1−

 
 K-3.2.4.  For example, if a two-sided 95% confidence interval is estimated, where 

05.0=α and , then 16=n 151161 =−=−= nv  and 131.215,975.015),2/05.0(1 ==− tt
05

. If a one-sided 
95% confidence interval is estimated, where .0=α and 16=n , then 151161 =−=−= nv  
and t  .753.115 == 15,95.0t,05.01−
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 K-3.2.5.  For one-side confidence intervals for the population mean ( μ ), the equations for 
estimating the upper confidence limit (UCL) and lower confidence limit (LCL) are as follows: 
 
 ( )1 ,UCL  x  t s/ nα ν−= +  

 
 ( )1 ,LCL  x  t s/ nα ν−= − . 

 
 K-3.2.6.  The corresponding one-sided confidence intervals for are as follows:  
 
 ( )( )ns/t x να ,1, −+∞−  
 
 ( )( )∞+− − ,,1 ns/t x να . 
 
 K-3.2.7.  The two-sided confidence interval for the population mean is as follows: 
 
 ( )ns/t  x να ,2/1−± . 
 

 K-3.3.  Example of a Confidence Interval for the Mean (Normal Distribution).  Suppose a 
one-sided 95% lower confidence interval is desired for the mean concentration of (total) chro-
mium in subsurface (below 5 feet from ground surface) soil at Site A.  
 
 K-3.3.1.  These are the same data used in Paragraph L-6.1.3 as an example of a one-sample 
t-test. In that example there was evidence that the average was greater than 2 and not less than 2. 
A similar conclusion can also be reached when confidence intervals are constructed and com-
pared to the regulatory threshold of 2, as illustrated in this example.  
 
 K-3.3.2.  The first step is to verify that the data follow a normal distribution. The Shapiro-
Wilk test is performed with these data; this test shows evidence that the data follow a normal dis-
tribution because the test’s p value was 0.8489 and is greater than 0.05. 
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Table K-2. 

Example Data 

Site A Sample 
Location 

Top 
Depth of 
Sample 

Bottom 
Depth of 
Sample 

Chromium 
(Total) Concen-
tration (mg/kg)

Site A Sample 
Location 

Top 
Depth of 
Sample 

Bottom 
Depth of 
Sample 

Chromium 
(Total) Con-
centration 

(mg/kg) 
EPC-SB01  9 10 2.95 EPC-SB07  9 10 5.1 
EPC-SB01  14 15 5.17 EPC-SB07  14 15 4.94 
EPC-SB01  19 20 4.8 EPC-SB07  19 20 4.76 
EPC-SB02  9 10 4.53 EPC-SB08  9 10 4.62 
EPC-SB02  14 15 4.01 EPC-SB08  14 15 4.72 
EPC-SB02  19 20 5.91 EPC-SB08  19 20 4.73 
EPC-SB03  9 10 3.96 EPC-SB09  9 10 3.21 
EPC-SB03  14 15 4.81 EPC-SB09  14 15 4.14 
EPC-SB03  19 20 5.27 EPC-SB09  19 20 4.85 
EPC-SB04  9 10 5.99 EPC-SB10  9 10 4.25 
EPC-SB04  14 15 4.6 EPC-SB10  14 15 5.09 
EPC-SB04  19 20 5.51 EPC-SB10  19 20 3.68 
EPC-SB05  9 10 4.72 EPC-SB11  9 10 5.12 
EPC-SB05  14 15 3.56 EPC-SB11  14 15 6.6 
EPC-SB05  19 20 4.22 EPC-SB11  19 20 6.19 
EPC-SB06  9 10 3.91 EPC-SB12  9 10 3.15 
EPC-SB06  14 15 5.81 EPC-SB12  14 15 4.11 
EPC-SB06  19 20 4.48 EPC-SB12  19 20 2.8 

 
 K-3.3.3.  The mean and standard deviation of the data were calculated:  
 
 619.4=x  
 
 . 8980.0=s
 
Note that:  
 
 05.0=α  (for the 95% level of confidence) 
 
  36=n
 
and  
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 . 351361 =−=−= nv
 
 K-3.3.4. Using Table B-23 of Appendix B and linear interpolation, we find the critical 
value to be 1.691.  
 
 691.12/)684.1697.1(35,95.0,1 =+==− tt vα . 
 
The confidence interval is  
 

 ( ){ }( ) ( )4.619 1.691 0.8980 / 36 , 4.37 ,− ∞ = ∞  . 

 
 K-3.3.5.  The confidence interval does not contain 2 (the lower confidence limit exceeds 2); 
therefore, this is evidence that the average is greater than 2, the regulatory threshold. 
 
 K-3.4.  Tolerance Interval (Normal Distribution).  A one-sided tolerance limit is an upper 
or a lower confidence limit of a percentile (or proportion). A one-sided upper tolerance limit 
(UTL) that is greater than at least p100% of the population with probability (1 – α)100% is the 
(1 – α)100% upper confidence limit for the p100th percentile of the population (Hahn, 1970). 
Similarly, a one-sided lower tolerance limit (LTL) that is less than at least p100% of the popula-
tion with probability (1 – α)100% is the (1 – α)100% lower confidence limit for the p100th per-
centile of the population. However, two-sided tolerance intervals are not equivalent to two-sided 
confidence intervals of percentiles. “Tolerance limits differ from confidence intervals in that tol-
erance limits provide an interval within which at least a proportion q of the population lies, 
within probability 1 – α or more that the stated interval does indeed ‘contain’ the proportion q of 
the population” (Conover, 1999). “Two-sided tolerance intervals are rarely used in environ-
mental studies, perhaps because there are few applications that attempt to determine the location 
of a central proportion of data, with allowable exceedances at both high and low ends” (Helsel, 
2005). 
 
 K-3.4.1.  Directions for a Tolerance Interval  (Normal Distribution). Let  rep-
resent the n data points from a normal distribution. These could be either n individual samples or 
n composite samples consisting of k aliquots each. A two-sided (1 – α)100% tolerance interval to 
contain at least p100% of a normal distribution is denoted as 

nxxx ,,, 21 K

( )UL xx , , where xL is the lower tol-
erance limit and xU is the upper tolerance limit. 
 
 K-3.4.1.1.  Verify data come from a normal distribution using tests presented in Appendi-
ces F and J, such as the Shapiro-Wilk test (Paragraph F-3) and a normal probability plot (Para-
graph J-5.5). 
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 K-3.4.1.2.  Calculate the sample mean, x , and the standard deviation, s (Appendix D).  
 

 K-3.4.1.3.  For a two-sided tolerance interval, ( )UL xx , : 
 
 npL gsxx ,,1 α−−=  
 
 npU gsxx ,,1 α−+=  . 

 
 K-3.4.1.4.  Use Table B-14 of Appendix B to find the critical value g.  

 
 K-3.4.1.5.  An approximation for g that may be useful (e.g., to find values of g that are not 
in Table B-13) is: 
 

 ( ) ⎟
⎠
⎞

⎜
⎝
⎛ +⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
≈

−
+− n

nZg
n

pnp 2
111

2/1

2
1,

2/1,,1
α

α χ
 . 

 
Percentiles of the chi-square distribution, , are listed in Table B-2. Percentiles of the stan-
dard normal distribution, Zp, are listed in Table B-15. Hahn states that the approximation “ap-
pears to be good for most practical purposes even for n as small as 5” (Hahn, 1970). 

2
,νχ p

 
 K-3.4.1.6.  For a one-sided lower tolerance limit, : Lx
 
 npL gsxx ,,1 α−′−=  . 

 
 K-3.4.1.7.  For a one-sided upper tolerance limit, : Ux
 
 npU gsxx ,,1 α−′+=  . 
 
 K-3.4.1.8.  Use Table B-13 of Appendix B to find the critical value g´ (for values of p > 
0.5).  
 
 K-3.4.1.9.  An approximation for g´ that may be useful is: 

 

 
( ) 2/12

,,1 a
abZZ

g pp
np

−+
≈′−α  
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 ( )12
1

2
1

−
−= −

n
Za α  

 

 
n

ZZb p

2
12 α−−=  . 

 

However, Hahn states that this approximation “is poor for very small n, especially for large p and 
large 1- α, and is not advised for n < 8” –α (Hahn, 1970). 

 
 K-3.4.2.  Example of a Two-sided Tolerance Interval (Normal Distribution).  Suppose a 
two-sided 95% tolerance interval to contain at least 90% of the population is desired for chro-
mium concentrations (total) in subsurface (below 5 feet from ground surface) soil at Site A, us-
ing the same data as Paragraph K-3.2. 
 
 K-3.4.2.1.  The first step is to verify that the data follow a normal distribution. The 
Shapiro-Wilk test is performed with these data. This test shows evidence that the data follow a 
normal distribution because the test’s p value was 0.8489 and is greater than 0.05. 
 
 K-3.4.2.2. The mean and standard deviation of the data were calculated: 
 
 619.4=x  
 
 . 8980.0=s
 
Note that: 
 
  90.0=p
 
  36=n
 
 05.0=α . 
 
 K-3.4.2.3.  From Table B-14, 090.235,90.0,95.0 =g and 052.240,90.0,95.0 =g . Therefore,  
 

 ( ) 082.2052.2090.2
3540
3536090.236,90.0,95.0 =−

−
−

−=g . 

 
 K-3.4.2.4.  The equation in Paragraph K-3.4.1.5 can also be used to calculate g: 
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 ( ) 082.2014.1
46.22

35645.1
362

11136 2/12/1

2
35,05.0

2/90.01,,1 =×⎟
⎠
⎞

⎜
⎝
⎛×=⎟

⎠
⎞

⎜
⎝
⎛

×
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
≈ +− χα Zg np . 

 
 K-3.4.2.5.  The two-sided tolerance interval is: 
 
  mg/kg 8980.0082.2619.4 ×±
 
 (2.749, 6.489) mg/kg. 
 
 K-3.4.3.  Example of a One-Sided Upper Tolerance Limit, UTL (Normal Distribution).  
Suppose a UTL for the 95th percentile and 95% confidence level (also called a 95 UTL) is de-
sired for chromium concentrations (total) in subsurface (below 5 feet from ground surface) soil at 
Site A, using the same data in Paragraph K-3.3. 
 
 K-3.4.3.1.  As shown in the previous examples, the data seem to follow a normal distribu-
tion. For this example: 
 
  95.0=p
 
  36=n
 
 05.0=α  
 
 95.01 =−α  
 
 619.4=x  
 
 . 8980.0=s
 
 K-3.4.3.2.  Using Table B-13 of Appendix B and linear interpolation, we find the critical 
value for the one-sided upper confidence limit to be  
 

 ( ) 159.2125.2167.2
3540
3536167.236,95.0,95.0,,1 =−

−
−

−=′=′− gg npα . 

 
 K-3.4.3.3.  The approximation for g´ in Paragraph K-3.4.1.9 may also be used to estimate 
g´: 
 

 ( ) ( ) 9613.0
70
645.11

1362
1

12
1

22
95.0

2
1 =−=

−
−=

−
−= − Z

n
Za α  
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 631.2
36
645.1645.1

36

2
2

2
95.02

95.0

2
12 =−=−=−= − ZZ
n

ZZb p
α  

 

 
( ) ( ) 149.2

9613.0
631.29613.0645.1645.1 2/122/12

,,1 =
×−+

=
−+

≈′− a
abZZ

g pp
npα . 

 
 K-3.4.3.4.  So, using the value for g´ from Table B-13, the UTL is: 
 
 558.6159.28980.0619.4UTL =×+=  mg/kg. 
 
 K-3.4.4.  Confidence Interval for the Variance or Standard Deviation (Normal Distribu-
tion).  To estimate the precision of variance estimates, a confidence interval for the variance or 
standard deviation can be constructed. This information may be necessary for a sensitivity analy-
sis of the statistical test or analysis method. The method described below can be used to find a 
two-sided %100)1( α− confidence interval. This confidence interval assumes that the data consti-
tute a random sample from a normally distributed population and can be highly sensitive to out-
liers and to departures from normality. Directions are presented in Paragraph K-3.4.4.1, followed 
by an example in Paragraph K-3.4.4.2. 

 
 K-3.4.4.1.  Directions for a Confidence Interval for the Variance and Standard Deviation 
(Normal Distribution).  Let represent the n data points from a normal distribution. nxxx ,,, 21 K

 
 K-3.4.4.1.1.  Verify data come from a normal distribution using tests presented in Appen-
dices F and J such as the Shapiro-Wilk test (Paragraph F-3) and a normal probability plot (Para-
graph J-5.5). 
 
 K-3.4.4.1.2.  Calculate the sample variance,  (Appendix D). 2s
 
 K-3.4.4.1.3.  For a %100)1( α− two-sided confidence interval, use Table B-2 of Appendix 
B to find the critical values 2

,2 vαχ and 2
,21 vαχ −  with degrees of freedom v = (n – 1). 

 
 K-3.4.4.1.4.  A %100)1( α− confidence interval for the true underlying variance is 

: ),( 22
UL ss

 

 2
,21

2
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v
L

sns
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−
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 K-3.4.4.1.5.  A %100)1( α− confidence interval for the true underlying standard deviation 
is : ),( UL ss
 

 2
,21

2)1(

v
L

sns
αχ −

−
=  

 

 2
,2

2)1(

v
U

sns
αχ
−

= . 

 
 K-3.4.4.2.  Example of Constructing a Confidence Interval for the Sample Variance and 
Standard Deviation (Normal Distribution).  Consider the following data, background subsurface 
chromium concentrations of 3.84, 4.26, 4.53, 4.60, 5.28, 5.29, 5.74, and 5.86 mg/kg.  
 
 K-3.4.4.2.1.  A confidence interval for the sample variance will be calculated based on a 
95% level of confidence. 

 K-3.4.4.2.2.  Testing the data for normality using the Shapiro-Wilk test indicated that the 
data were normal. So, a confidence interval for the sample variance based on a normal distribu-
tion can be calculated. 
 
 K-3.4.4.2.3.  The sample variance, . The required critical values are obtained 
from Table B-2: 

526.02 =s

 
  69.12

7,025.0
2

1,2/ ==− χχα n

 
 . 01.162

7,975.0
2

1),2/1( ==−− χχ α n

 
 K-3.4.4.2.4.  A 95% confidence interval for the true underlying variance is (0.228, 2.18): 
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 K-3.4.4.2.5.  A 95% confidence interval for the true underlying standard deviation is 
(0.479, 1.48): 
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 K-3.4.5.  Prediction Interval (Normal Distribution).  The prediction interval presented here 
is constructed assuming that the data follow a normal distribution with unknown mean and stan-
dard deviation. Most evaluations with environmental data only need a one-sided prediction inter-
val, so this discussion will focus on the one-sided, upper prediction limit. To obtain a two-sided 
prediction interval, first replace α  by 2α . Then use the equation for the upper limit as the 
lower limit after replacing the addition of the standard deviation term with subtraction. The pre-
diction interval must specify the overall level of confidence. That means a prediction interval’s 
confidence level must account for the level of confidence of every future comparison. This is ac-
complished by setting the confidence level for each of the k future comparisons to 

%100)/1( kα− . Directions for calculating an upper prediction limit are presented in Paragraph 
K-3.4.5.1, followed by an example in Paragraph K-3.4.5.2.  
 
 K-3.4.5.1.  Directions for Calculating an Upper Prediction Limit for k Future Comparisons 
of the Mean Calculated from m Observations (Normal Distribution).  Verify the assumptions of 
normality. 
 
 K-3.4.5.1.1.  The population mean and standard deviation are unknown. Specify k and m 
for the interval, where the mean of m observations is taken k times in the future (i.e., k samples 
are analyzed and the result reported for each sample is the mean of m replicate measurements).  
 
 K-3.4.5.1.2.  Specify the level of confidence for the upper prediction limit as %100)1( α− . 
 
 K-3.4.5.1.3.  Calculate the upper prediction limit  
 

 
nm

tsx nk
11

1,1 ++ −−α  
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where x  is the mean of the original data, s is the standard deviation, and n is the total number of 
observations (measurements of the original data set).  
 
 K-3.4.5.1.4.  Table B-23 of Appendix B provides values for 1,1 −− nkt α .  
 
 K-3.4.5.1.5.  If the future observations are found to be in the prediction interval, this is evi-
dence that there has been no change in the sample values. If a future observation falls outside of 
the prediction interval, this is statistical evidence that the new observation does not come from 
the same distribution. 
 
 K-3.4.5.1.6.  When replicate sample analyses are not done (i.e., a signal measurement or 
analysis is performed for each sample), set m = 1. For a single future observation (i.e., one sam-
ple analyzed once), set  and 1=m 1=k . 
 
 K-3.4.5.2.  Example of Calculating a Normal Upper Prediction Limit for k Future Com-
parisons of the Mean from m Observations (Normal Distribution).  A prediction interval is cal-
culated for a set of “background well” measurements to determine if a set of “compliance well” 
measurements are “elevated” relative to background levels. The background well data set was 
tested for normality using the Shapiro-Wilk test. Because the data set was not normally distrib-
uted, the data set was normalized by taking the natural logarithm of each result.   
 
 K-3.4.5.2.1.  For the compliance well data set, m = 4 replicate measurements are made for 
k = 1 sample. Let α = 0.01 for the prediction interval. For the background data set, n = 8. 
 

Table K-3. 
Example Compliance Well data 

Background 
Well 

Sample 
Date Result Log Re-

sult 
Compliance 

Well Result Log Result Sample 
Date 

69-2-07 2001 0.0137  –4.290 69-2-08 0.563 –0.574 2002 
69-2-07 2001 0.019  –3.963 69-2-08 0.512 –0.669 2002 
69-2-07 2001 0.0163  –4.117 69-2-08 0.475 –0.744 2002 
69-2-07 2001 0.0195  –3.937 69-2-08 0.546 –0.605 2002 
69-2-07 2001 0.0112  –4.492     
69-2-07 2001 0.0112  –4.492     
69-2-07 2001 0.0102  –4.585     
69-2-07 2001 0.00946  –4.661     
Mean - 0.01382 –4.317  0.524 –0.6484  

Std. Dev. - 0.00398 0.2832  0.0389 0.0753  
 

 79.3
8
1

4
1)998.2(2832.0317.411

1,1 −=++−=++ −− nm
tsx nkα  
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 998.27,99.018,
1
01.011,1 ===

−−
−− ttt nkα   

 
using Table B-23 of Appendix B. 
 
 K-3.4.5.2.2.  Because the data set was transformed by taking the natural logarithm prior to 
calculating the upper prediction limit, to express the calculated limit in terms of the original 
units, it is necessary to perform the inverse transformation (i.e., to take the exponent of the calcu-
lated limit): exp(–3.79) = 0.0226. Therefore, the prediction interval is (0, 0.0226). Now we can 
compare the mean of the compliance well observations (0.524) with the upper limit of the predic-
tion interval (0.022) calculated from the background well data. As 0.524 > 0.0226, there is sig-
nificant evidence that the compliance well observations do not come from the same distribution 
as the background well.  
 
K-4.  Statistical Intervals Based on Lognormal Distribution. 
 
 K-4.1.  Confidence Interval for the Mean.   
 
 K-4.1.1.  When data are truly lognormal, it is not recommended that confidence intervals 
be calculated using the natural-log transformed data and the normal confidence intervals. One 
reason is that the units as well as the confidence intervals would be in log scale. The confidence 
intervals cannot be transformed back to the original scale and original units without a special ad-
justment. 
 
 K-4.1.2.  For a lognormal distribution (the second alternative provided in the EPA UCL 
method flow chart), the EPA recommends calculating the UCL of the mean using one of several 
options based on the sample size, n, and the standard deviation of the log-transformed data, sy. 
Table K-4, which summarizes these recommendations, has been adapted from the ProUCL Ver-
sion 3.0 User Guide (EPA 600/R-97/006). Determining the UCL for lognormal populations is a 
current area of research and these recommendations are subject to change. It should be noted that 
ProUCL is freely distributed and relatively simple to use. In addition to the computational meth-
ods listed below, the most current version of the software uses the gamma distribution to calcu-
late UCLs. The software calculates UCLs using a number of different computational methods 
and automatically selects the “best” method (e.g., using criteria similar to that presented in Table 
K-4). However, it should also be noted that these computational methods can result in relatively 
large UCLs (e.g., near the maximum detected values when the distributions are extremely 
skewed). This problem can be potentially avoided or at least minimized by collecting composite 
rather than grab samples (when possible and consistent with data quality objectives), as this 
tends to normalize data (i.e., composite samples produced from a sufficiently large number of 
grabs tend to be normally distributed). 
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 K-4.2.  Land Method.   
 
 K-4.2.1.  Introduction.  The Land method was touted in older EPA guidance, but it is no 
longer recommended in all cases because it is very sensitive to deviations from lognormality. 
Recall that distribution tests are primarily tests that the fit assumption cannot be rejected, rather 
than that the fit is perfect. Consequently, it is possible to pass a test for lognormality even when 
there are deviations from that distribution. This outcome is more likely for small data sets (< 30), 
which are quite common in environmental applications. The UCL for the Land method is as fol-
lows: 
 

 
2 2

1
1UCL exp

2 1
y ys H s

y
n

α
α

−
−

⎛ ⎞
= + +⎜ ⎟⎜ ⎟−⎝ ⎠

 . 

 
 K-4.2.1.1.  The value of the H statistic is available in some statistical texts, including Gil-
bert (1987) and in Table B-8 of Appendix B. 
 
 K-4.2.1.2.  Directions for constructing a confidence interval for the population mean of a 
lognormal distribution using the Land method are given in Paragraph K-4.2.2, followed by an 
example in Paragraph K-4.2.3 (EPA 600/R-97/006).  
 
 K-4.2.2.  Directions for a Confidence Interval for the Mean (Lognormal Distribution, Land 
Method).  Let  represent the n data points from a lognormal distribution. nxxx ,,, 21 K

 
 K-4.2.2.1.  Verify that data come from a lognormal distribution using tests presented in 
Appendices F and J such as the Shapiro-Wilk test (Paragraph F-3) and a normal probability plot 
(Paragraph J-5.5). 
 
 K-4.2.2.2.  Using the log-transformed data, ( )ii xLny = , calculate the sample mean, y , and 
the standard deviation, . ys
 
 K-4.2.2.3.  Use Table B-8 of Appendix B to find the critical value (also called the H statis-
tic) for the given level of confidence, sample size, and standard deviation. If a two-sided confi-
dence interval for the mean is desired (LCL, UCL), the critical values are 

ysn and 
ysn  for the LCL and UCL, respectively. If a one-sided confidence interval for the mean is 

desired, the critical value for the LCL is
ysn , or the critical value for an UCL is 

ysn . To 
estimate H values not in the table, a four-point Lagrangian interpolation (cubic interpolation) 
should be implemented. 

H ,,2/α

H ,,1 α−

H ,,2/1 α−

H ,,α
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Table K-4. 
Recommended Methods for Computation of a 95% UCL for the Unknown Mean of a Log-
normal Population 

Standard Deviation of 
Log-Transformed Data, 

 ys Sample Size, n 
 

Recommended Method (Paragraph Reference) 
 

0.5ys <  For all n Student’s t (K-3.4.4) or 
Land (K-4.1) 

0.5 1.0ys≤ <  For all n Land (K-4.1) 

25<n  95% Chebyshev (MVUE) UCL (K-4.1) 
1.0 1.5ys≤ <  

25≥n  Land (K-4.1) 
20<n  99% Chebyshev (MVUE) UCL (K-4.1) 

5020 <≤ n  95% Chebyshev (MVUE) UCL (K-4.1) 1.5 2.0ys≤ <  

50≥n  Land (K-4.1) 
20<n  99% Chebyshev (MVUE) UCL (K-4.1) 

5020 <≤ n  97.5% Chebyshev (MVUE) UCL (K-4.1) 
7050 <≤ n  95% Chebyshev (MVUE) UCL (K-4.1) 

2.0 2.5ys≤ <  

70≥n  Land (K-4.1) 

30<n  Larger of (99% Chebyshev (MVUE) UCL (K-4.1) or 99% 
Chebyshev (Mean, Sd) (K-5) 

7030 <≤ n  97.5% Chebyshev (MVUE) UCL (K-4.1) 
10070 <≤ n  95% Chebyshev (MVUE) UCL (K-4.1) 

2.5 3.0ys≤ <  

100≥n  Land (K-4.1) 
15<n  Hall’s Bootstrap* (K-4.1) 

5015 <≤ n  Larger of (99% Chebyshev (MVUE) UCL (K-4.1) or 99% 
Chebyshev (Mean, Sd) (K-5) 

10050 <≤ n  97.5% Chebyshev (MVUE) UCL (K-4.1) 
150100 <≤ n  95% Chebyshev (MVUE) UCL (K-4.1) 

3.0 3.5ys≤ <  

150≥n  Land (K-4.1) 
3.5ys ≥  For all n Use non-parametric methods* (K-5) 

*In case Hall’s Bootstrap method yields an erratic unrealistically large UCL value, then the UCL of the mean may 
be computed based upon the Chebyshev inequality. 

 
 K-4.2.2.4.  For a two-sided confidence interval for the mean, the equations are as 
follows: 
 

 
2 2

/ 2 1 / 2LCL exp , UCL exp
2 21 1
y y y y as s H s s H

 = y  = y
n n

α −⎛ ⎞ ⎛
+ + + +⎜ ⎟ ⎜⎜ ⎟ ⎜− −⎝ ⎠ ⎝

⎞
⎟⎟
⎠

. 

 
 K-4.2.2.5.  For a one-sided confidence interval for the mean, LCL or UCL, the 
equation is as follows: 
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2

LCL exp
2 1
y ys⎛ s H

 = y
n

α+ +⎜ ⎟⎜ ⎟−⎝ ⎠
 or 

⎞ 2
1UCL exp

2 1
y y as s H

 = y
n

−⎛ ⎞
+ +⎜ ⎟⎜ ⎟−⎝ ⎠

. 

 
 K-4.2.3.  Example of a Confidence Interval for the Mean (Lognormal Distribution), Land 

Sample ID Result (mg/kg) Ln(Result) (Ln mg/kg) 
E 13 

   

 

 

 
K-4.2.3.1.  The first step is to verify that the data follow a lognormal distribution. The 

K-4.2.3.2.  Using the log-transformed data,  

Method.  Suppose a one-sided 95% UCL is desired for concentrations of chromium (total) in 
background subsurface soil (5 feet below ground surface). 
 

PC-BG01-0 0.0196 –3.932 
EPC-BG01-020 0.00605 –5.108 

  EPC-BG02-010 0.00485 –5.329 
  EPC-BG02-020 0.0101 –4.595 
  EPC-BG03-010 0.00756 –4.885 
  EPC-BG03-020 0.00596 –5.123 
  EPC-BG04-010 0.0143 –4.248 
  EPC-BG04-020 0.00499 –5.300 
  EPC-BG05-010 0.00997 –4.608 
  EPC-BG05-020 0.00464 –5.373 
  EPC-BG06-010 0.00813 –4.812 
  EPC-BG06-023 0.00313 –5.767 
  EPC-BG07-010 0.00834 –4.787 
  EPC-BG07-020 0.00579 –5.151 
  EPC-BG08-010 0.00638 –5.055 
  EPC-BG08-020 0.00517 –5.265 

 
Shapiro-Wilk test was performed with the log-transformed data. This test shows evidence that 
the data follow a normal distribution because the test’s p value was 0.6570 and is greater than 
0.05. 
 
 
 

959.4−=y   

nd 

K-4.2.3.3.  The critical value is 

 
a
 
 4574.0=ys . 
 

007.24574.0,16,95.0 =H . A four-point Lagrangian interpolation 
is criti(cubic interpolation) was implemented to obtain th cal value. K-4.2.4 shows how the criti-
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K-4.2.3.4.  For a one-sided upper confidence interval for the mean, UCL, the equation is: 

 

cal value 4574.0,16,95.0H  was derived.  
 
 
 

2 2
1 0.4574 0.4574(2.007)UCL exp exp 4.959 0.0099.

2 21 16
y y as s H

 = y
n

−⎛ ⎞ ⎛ ⎞
+ + = − + + =⎜ ⎟ ⎜ ⎟⎜ ⎟− −⎝ ⎠⎝ ⎠

 
1

 
K-4.2.4.  Lagrangian Interpolation (Cubic Interpolation) for the H Statistic. The details of 

K-4.2.4.1.  Suppose the H statistic

 
the Lagrangian (cubic) interpolation are provided to assist in the use of Table B-8 of Appendix 
B. 
 

( )
ysnH ,,2/1 α−  is desired for  

 
 95.02/1 =−α  
 
 16=n  
 
 4574.0=ys   

rom Paragraph K-4.2.3). 

K-4.2.4.2.  A Lagrangian interpolation requires bounding the desired value by two tabu-

 
(f
 
 
lated values lower and two tabulated values higher than the desired value. Using the example 
above, we need a column of H statistics when 16=n  because there is no such column in Table 
B-8. The tabulated columns n = 12, 15 (two values below 16) and n = 21, 31 (two values above 
16) are used to generate a column for 16=n . Once the column of H statistics is generated for 

16=n , Lagrangian interpolation can be used to get the H statistic for 4574.0=ys . 
 

K-4.2.4.3.  So the columns associated with sy = 0.30, 0.40 (two values below 0.4574) and sy 

K-4.2.4.4.  From Table B-8, the following H statistics, , are needed for these inter-

 
= 0.50, 0.60 (two values above 0.4574) are used to generate a column for sy = 0.4574. 
 
 

ysnH ,,95.0

polations: 
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 n 

ys  12 15 16 21 31 
0.30 1.927 1.882 30.0,16,95.0H  1.833 1.793 
0.40 2.026 1.968 40.0,16,95.0H  1.905 1.856 
0.4574 — — 4574.0,16,95.0H  — — 
0.50 2.141 2.068 50.0,16,95.0H  1.989 1.928 
0.60 2.271 2.181 60.0,16,95.0H  2.085 2.010 

 
 K-4.2.4.5.  The first part of the interpolation process is to generate a column of H statistics 
for . For each sy, the following equation is used: 16=n
 

 
.

)2131)(1531)(1231(
)2116)(1516)(1216(

)3121)(1521)(1221(
)3116)(1516)(1216(

)3115)(2115)(1215(
)3116)(2116)(1216(

)3112)(2112)(1512(
)3116)(2116)(1516(

,31,95.0,21,95.0

,15,95.0,12,95.0,16,95.0

yy

yyy

ss

sss

HH

HHH

−−−
−−−

+
−−−
−−−

+
−−−
−−−

+
−−−
−−−

=
 

 
So, 

 .8702.10118.02037.0960.12817.0

)793.1(
)2131)(1531)(1231(
)2116)(1516)(1216()833.1(

)3121)(1521)(1221(
)3116)(1516)(1216(

)882.1(
)3115)(2115)(1215(
)3116)(2116)(1216()927.1(

)3112)(2112)(1512(
)3116)(2116)(1516(

30.0,16,95.0

=−++−=
−−−
−−−

+
−−−
−−−

+
−−−
−−−

+
−−−
−−−

=H

 

 
The same process was used to determine , , and . 40.0,16,95.0H 50.0,16,95.0H 60.0,16,95.0H
 

 n 
ys  12 15 16 21 31 

0.30 1.927 1.882 1.870 1.833 1.793 
0.40 2.026 1.968 1.953 1.905 1.856 
0.4574 — — 4574.0,16,95.0H  — — 
0.50 2.141 2.068 2.049 1.989 1.928 
0.60 2.271 2.181 2.158 2.085 2.010 

 
 K-4.2.4.6.  Next, the H statistic values for the various  at ys 16=n  are used to interpolate 

. 4574.0,16,95.0H
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.007.2
1384.0320.19337.01087.0

)158.2(
)50.060.0)(40.060.0)(30.060.0(

)50.04574.0)(40.04574.0)(30.04574.0(

)049.2(
)60.050.0)(40.050.0)(30.050.0(

)60.04574.0)(40.04574.0)(30.04574.0(

)953.1(
)60.040.0)(50.040.0)(30.040.0(

)60.04574.0)(50.04574.0)(30.04574.0(

)870.1(
)60.030.0)(50.030.0)(40.030.0(

)60.04574.0)(50.04574.0)(40.04574.0(
4574.0,16,95.0

=
−++−=

−−−
−−−

+

−−−
−−−

+

−−−
−−−

+

−−−
−−−

=H

 

 
Thus, the H statistic is 2.007. 
 
 K-4.3.  Chebyshev (MVUE) Method.   
 
 K-4.3.1.  Introduction.  For the Chebyshev (MVUE) method, first estimate the mean and 
variance using the minimum unbiased variance approach discussed in Appendix D. Then calcu-
late the )%1(100 α− UCL of the mean using: 
 

 ( )2
1 1

1ˆ ˆUCL 1 sα 1μ μ
α−

⎛ ⎞= + −⎜ ⎟
⎝ ⎠

 . 

 

The quantities 1μ̂  and are the MVUE estimates of the mean and standard deviation given 
in equations D-2 and D-3 in Appendix D. An example of using this method follows in Paragraph 
K-4.3.2. 

( )1
2 μ̂s

 
 K-4.3.2.  Example of a Confidence Interval for the Mean (Lognormal Distribution), Cheby-
shev MVUE Method.  Suppose chromium concentrations (mg/kg) measured at a site are as fol-
lows: 
 

0.378 1.411 1.089 0.918 
0.073 0.518 2.240 0.111 
1.246 2.251 1.967 1.894 
1.414 13.844 1.222 0.962 
0.094 0.247 0.371 0.056 
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 K-4.3.2.1.  ProUCL was used to determine the 95% UCL for the population mean. The data 
follow a lognormal distribution (Shapiro-Wilk p = 0.905 on the log-transformed data). The sam-
ple size is 20, and the standard deviation of the log-transformed values is 1.39. Table J-2 recom-
mends using the 95% Chebyshev MVUE UCL as the 95% UCL for the population mean under 
these conditions. 
 
 K-4.3.2.2.  The MVUE estimate of the mean, 1μ̂ , is 1.66, and the standard deviation of the 
estimate of the mean, , is 0.607. Therefore, ( 1

2 μ̂s )
 

 ( ) ( )22
0.95 1 1

1 1ˆ ˆUCL 1 1.66 1 0.607 4.30
0.05

sμ μ
α

⎛ ⎞ ⎛ ⎞= + − = + − =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

. 

 
 K-4.4.  Hall’s Bootstrap Method.   
 
Although Hall’s Bootstrap is a nonparametric method related to the Bootstrap technique pre-
sented in Paragraph K-5, a limited presentation will be given here because EPA guidance 
(OSWER 9285.6-10) specifically recommends this technique for calculating the UCL of a log-
normal population under certain situations described in Table K-4. The method adjusts for bias 
and skewness in the data (OSWER 9285.6-10). Directions for implementing Hall’s Bootstrap are 
given in Paragraph K-4.4.1 and results of Hall’s method from ProUCL Version 3.0 are presented 
in Paragraph K-4.4.2. The directions for performing the bootstrap method are presented for illus-
tration only, as bootstrap methods require too many arithmetic calculations for manual calcula-
tions to be practical. 
 

 K-4.4.1.  Directions for Implementing Hall’s Bootstrap Method for a )%1(100 α−  UCL.  
Let  represent n randomly sampled concentrations. nxxx ,,, 21 K

 
 K-4.4.1.1.  Compute the sample mean,  
 

 ∑
=

=
n

i
ix

n
x

1

1 . 

 
 K-4.4.1.2.  Compute the sample standard deviation,  
 

 ( )∑
=

−=
n

i
i xx

n
s

1

21 . 

 
 K-4.4.1.3.  Compute the sample skewness,  
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 K-4.4.1.4.  Do the following a large number of times: 
 
 K-4.4.1.4.1.  Generate a simple random sample of n values from  with re-
placement. 

nxxx ,,, 21 K

 
 K-4.4.1.4.2.  Compute the sample mean, ix , standard deviation, , and skewness, , of 
the sample found in K-4.4.1.4.1. 

is ik

 
 K-4.4.1.4.3.  Compute the Studentized mean,  
 

 
( )

i

i
i s

xx
W

−
= . 

 
 K-4.4.1.4.4.  Compute Hall’s statistic,  
 

 
n

kWkWk
WQ iiiii

ii 6273

322

+++= . 

 
 K-4.4.1.4.5.  Sort all the values, , in ascending sequence and calculate the αth lower 
quantile, . 

iQ

αQ
 
 K-4.4.1.4.6.  Calculate  
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The one-sided %100)1( α−  upper confidence limit is WsxUCL −=−α1 . 
 
 K-4.4.2.  Example of a Confidence Interval for the Mean (Lognormal Distribution), Hall’s 
Bootstrap.  Suppose chromium concentrations (mg/kg) measured at a site are as follows: 
 
 0.331 0.104 
 68.977 0.022 
 0.908 2.044 



EM 1110-1-4014 
31 Jan 08 
 

K-26 

 140.605 0.093 
 157.359 0.213 
 
ProUCL was used to determine the 95% UCL for the population mean. The data follow a log-
normal distribution (Shapiro-Wilk p = 0.842 on the log-transformed data). The sample size is 10, 
and the standard deviation of the log-transformed values is 3.27. Table K-4 recommends using 
Hall’s Bootstrap to estimate the 95% UCL for the population mean under these conditions. The 
Bootstrap algorithm was run with the result UCL0.95 = 71.4 mg/kg. Because this result is based 
on random sampling, it may change with repeated runs. As a comparison, the Land method 95% 
UCL for this data is over 3,240,000 mg/kg (an unrealistically large value). 
 
 K-4.4.3.  Confidence Interval for a Percentile–Tolerance Interval (Lognormal Distribu-
tion).  A lognormal confidence interval for the p100th percentile of a lognormal distribution, Xp, 
with %100)1( α− confidence, can be derived by using the log-transformed data with the equa-
tions for the normal confidence interval. When )(XLnY =  is normal (i.e., X is lognormal), given 
a set of sample values y1, y2…yn with sample mean y  and standard deviation , the exponent of s
y  is an estimate of the 50th percentile (median) of X (X0.5):  
 
 )exp(5.0 yx =  . 
 
 K-4.4.3.1.  The two-sided )%1(100 α− confidence interval for the median of X is: 
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− −−−
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st
y nn 1,211,2 exp,exp αα .  

 
 K-4.4.3.2.  In general, if X is lognormal and ),(XLnY =  then an estimate xp of the p100th 
percentile of X (Xp) is obtained by first calculating an estimate of Yp (the p100th percentile of Y), 
 
 styy npp 1, −+=  
 
and then performing the inverse transformation (exponentiation) on this quantity. The (maximum 
likelihood) estimate of the percentile Xp in terms of the original variable (X) is: 
 
 ( )styyx nppp 1,exp)exp( −+== . 
 
 K-4.4.3.3.  A one-sided upper confidence limit for the percentile Xp is calculated as fol-
lows: 
 
 )exp( ,,1 sgy npα−′+  for p > 0.5 . 
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 K-4.4.3.4.  The term in parentheses is simply a confidence limit for a normal percentile or 
tolerance limit as described in Paragraph K-3.4. 
 
 K-4.4.3.5.  A two-sided tolerance interval is calculated as follows: 
 
 ( )sgysgy npnp ,,1,,1 exp(),exp( αα −− +−  . 
 
 K-4.4.4.  Prediction Interval (Lognormal Distribution).  A lognormal prediction interval 
can be calculated using the log-transformed data with the process for developing normal predic-
tion intervals. When X is lognormal and Y = Ln(X) with sample mean y  and standard deviation 
s, then the prediction interval for the next k observations in the original scale is: 
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K-5.  Distribution-Free Statistical Intervals. 
 
 K-5.1.  Introduction.  The one-sided Chebyshev inequality for a mean can be used when no 
distribution can be assumed to fit the data. Regardless of the underlying probability distribution 
of some variable X, the following inequality will be satisfied for the (1 – α)100% UCL of the 
population mean μ: 
 

 1(1 )100% UCL 1x
n

σα
α

⎛ ⎞− ≤ + − ⎜ ⎟
⎝ ⎠

 . 

 
 K-5.1.1.  The right-hand side of the inequality serves as a conservative estimate of the 
UCL. However, as the population standard deviation σ is typically unknown, the UCL is usually 
estimated as follows: 
 

 1(1 )100% UCL 1 sx
n

α
α

⎛ ⎞− ≈ + − ⎜ ⎟
⎝ ⎠

 . 

 
 K-5.1.2.  Unfortunately, because the sample standard deviation population (s) is being used 
to estimate the population standard deviation (σ), the population mean may not actually be less 
than this limit at the prescribed level of confidence when the variance or skewness is large, espe-
cially for small sample sizes. See OSWER 9285.6-10 for more details. 
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 K-5.1.3.  This one-sided Chebyshev UCL, based on the mean and standard deviation, is 
recommended for use with the lognormal distribution under certain conditions described in Table 
K-4. In that situation use the untransformed data to calculate x  and s. 
  
 K-5.2.  Confidence Interval for the Mean.  If data do not follow either a normal or log-
normal distribution, EPA guidance (OSWER 9285.6-10) recommends using either the central 
limit theorem or Bootstrap resampling. Several methods are available for estimating confidence 
limits of the mean when no distributional assumptions are made. The Bootstrap and Jackknife 
procedures are nonparametric statistical techniques that can be used to construct approximate 
confidence intervals for parameters such as the population mean. These procedures are nonpara-
metric or distribution-free because they do not require assumptions about the data’s distribution 
(such as normal or lognormal). It should be noted that statistical methods that account for the 
data’s distribution, when used appropriately, are more efficient than the nonparametric methods. 
Directions for the Bootstrap and Jackknife methods for estimating a nonparametric confidence 
interval for θ , the parameter of interest, are given in Paragraphs K-5.2.1 and K-5.2.2, respec-
tively. Examples are presented in Paragraphs K-5.2.3 and K-5.2.4. It should be noted that the 
both the Bootstrap and Jackknife methods are usually performed using statistical software owing 
to the large number of manual calculations that would be required. The Paragraphs below illus-
trate how the calculations are done. 
 

 K-5.2.1.  Directions for a Bootstrap Estimate of the Confidence Interval for θ .  Let 
be a random sample of size n.  nxxx ,,, 21 K

 
 K-5.2.1.1.  The parameter of interest is θ  and a reasonable estimate of θ  is . For exam-
ple, 

θ̂
θ  is the mean and  is the minimum variance unbiased estimator (MVUE) of the mean 

(Appendix D). 
θ̂

 
 K-5.2.1.2.  Take n samples with replacement from the original set of random samples of 
size n, and define this new set of data as n . Note that the same result can be selected 
more than once. For this new data set, estimate  and denote it as . 

xxx 11211 ,,, K
θ̂ 1̂θ

 
 K-5.2.1.3.  Perform the previous step N times, each time calculating an estimate of . De-
note all N estimates of  as N . N should be considerably larger, such as 1000 or 
more. It is much easier to perform this simulation using a computer. 

θ̂
θ̂ θθθ ˆ,,ˆ,ˆ

21 K

 
 K-5.2.1.4.  Estimate the Bootstrap estimate of θ , Bθ , from the N estimates of , such that  Iθ̂
 

 ∑
=

=
N

I
IB N 1

ˆ1 θθ   

for . Ni ,,2,1 K=
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 K-5.2.1.5.  Derive the confidence interval for θ , with )%1(100 α− level of confidence, as 
( UL )θθ ,

100)1( α−

 where percentile from the set of N estimates and  
percentile from the set of N estimates (see Appendix G). A one-sided UCL is simply the 

 percentile from the set of N estimates. 

th
L 100)2/(αθ = th

U 100)2/1( αθ −=

th

 
 K-5.2.2.  Example of the Bootstrap Method for Estimating a Nonparametric Confidence In-
terval for θ .  A confidence interval for the population mean (μ) will be calculated for chromium 
concentrations in subsurface soil at Site A with 95% level of confidence. All chromium concen-
trations were detected so no proxy concentrations are needed to evaluate the data.  
 
 K-5.2.2.1.  The data are as follows: 2.95, 5.17, 4.80, 4.53, 4.01, 5.91, 3.96, 4.81, 5.27, 5.99, 
4.60, 5.51, 4.72, 3.56, 4.22, 3.91, 5.81, 4.48, 5.10, 4.94, 4.76, 4.62, 4.72, 4.73, 3.21, 4.14, 4.85, 
4.25, 5.09, 3.68, 5.12, 6.60, 6.19, 3.15, 4.11, and 2.80 mg/kg.  
 
 K-5.2.2.2. An example of 10 samples with replacement taken from the original set of ran-
dom samples of size n = 36 is as follows: 2.95, 5.17, 5.91, 3.96, 4.80, 4.81, 4.53, 5.27, 4.01, and 
5.99 mg/kg. (Note that although replacement was adhered to, no sample’s values were actually 
“picked” twice.) 
 
 K-5.2.2.3.  For this new data set, estimated mean is .  74.41̂ =θ
 
 K-5.2.2.4.  Perform the previous step N times, and each time calculating an estimate of . 
Using a statistical software package, 

θ̂

 

 626.4ˆ1
1

== ∑
=

N

I
IB N

θθ  

 
for . Ni ,,2,1 K=
 
 K-5.2.2.5.  The confidence interval for θ , with 95% level of confidence reached upon 12 
repetitions, is 4.323 to 4.93. 
 
 K-5.2.3.  Directions for a Jackknife Estimate of the Confidence Interval for θ .  Estimate  
with all n samples from the data set. 

θ̂

 
 K-5.2.3.1.  Estimate by removing the ith sample (for )(̂iθ ni ,,2,1 K= ) from the original data 
set and use the same equation as was used to estimate . θ̂
 
 K-5.2.3.2.  Estimate the arithmetic mean,θ~ , from the n estimates of , such that  )(̂iθ
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i
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for . Note that the ith “pseudo-value” is defined as . ni ,,2,1 K= )(̂)1(ˆ

ii nnJ θθ −−=
 
 K-5.2.3.3.  Calculate the Jackknife estimator of θ  (the average of the  values), iJ
 

( ) θθθ ~)1(ˆ1ˆ
1

−−== ∑
=

nnJ
n

J
n

i
i . 

 
 K-5.2.3.4.  Estimate the standard error of the Jackknife estimate, ( )θ̂J , by  
 

( ) ( )( )∑
=

−
−

=
n

i
iJ JJ

nn 1

2
ˆ

ˆ
)1(

1ˆ θσ
θ

. 

 
 K-5.2.3.5.  Derive the confidence interval as 
 
 ( ) ( ) ( ) ( )( )

θαθα σθσθ ˆ1),2/(1ˆ1),2/(1 ˆˆ,ˆˆ
JnJn tJtJ −−−− +−  

 
with )%1(100 α−

1, −npt

 level of confidence; is the critical value from the Student’s t-distribution 
for the p100th percentile and n – 1 degrees of freedom. If only a one-sided confidence interval is 
needed, then . 

1, −npt

1,1 −−= nt α

 
 K-5.2.4.  Example of the Jackknife Method for Estimating a Nonparametric Confidence In-
terval for θ .  Using the same data set as for the Bootstrap example (Paragraph K-5.2.1), we will 
calculate a confidence interval for the mean (μ) using the Jackknife estimate with a 95% level of 
confidence.  
 
 K-5.2.4.1.  Estimate  with all 36 samples from the data set. 62.4ˆ =θ
 
 K-5.2.4.2.  Estimate  for i = 1, 2 … n = 36. The results are listed in Table K-5.  )(̂iθ
 
 K-5.2.4.3.  Estimate the arithmetic mean, 
 

 75.4ˆ1~
1

)( == ∑
=

n

i
in

θθ . 
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 K-5.2.4.4.  Calculate the Jackknife estimator of θ  (the average of the  values),  iJ
 

 ( ) 62.4~)1(ˆ1ˆ
1

=−−== ∑
=

θθθ nnJ
n

J
n

i
i . 

 
 K-5.2.4.5.  Estimate the standard error of the Jackknife estimate, ( )θ̂J , by  
 

 ( ) ( )( ) 15.0ˆ
)1(

1ˆ
1

2
ˆ =−

−
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i
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nn
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θ
.  

 
 K-5.2.4.6.  Derive the confidence interval,  
 
 ( ) ( )θα σθ ˆ1),2/(1 ˆˆ

JntJ −−±  
 
 ( ) ( ) 37.415.069.162.4ˆˆ

ˆ1),2/(1 =×−=− −− θα σθ JntJ   
 
 ( ) ( ) 87.415.069.162.4ˆˆ

ˆ1),2/(1 =×+=+ −− θα σθ JntJ .  
 
 K-5.2.4.7.  The critical value from the Student’s t-distribution was found using Table B-23 
in Appendix B and linear interpolation. 
 
 K-5.3.  Tolerance and Prediction Intervals.  An approximate two-sided nonparametric pre-
diction interval to contain the next single observation from the population with ( ) %1001 α−  con-
fidence can be estimated from the sample as ( ) ( )( )ul xx ,  where 
 

 ( )1
2

+= nl α  

 

 ( )1
2

1 +⎟
⎠
⎞

⎜
⎝
⎛ −= nu α  

 
and x(i) is the ith order statistic from the sample data (Helsel and Hirsch, 2003). If l or u is not an 
integer, linearly interpolate between the values of the two surrounding order statistics. One-sided 
prediction limits can be calculated by replacing α/2 with α when calculating the order statistic to 
use. An example calculation follows in Paragraph K-5.3.1. 
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 K-5.3.1.  Example of a One-Sided Nonparametric Prediction Limit for the Next Single Ob-
servation.  A 95% upper prediction limit for arsenic concentration at a single point in the future 
is desired. Arsenic concentrations at three background wells were measured once each month for 
12 months to yield 36 observations. Of the 36 observations, 19 were non-detects, so a nonpara-
metric prediction limit will be calculated. The 95% upper prediction limit is calculated as: 
 

( ) [ ][ ]( ) [ ][ ]( ) ( 15.3513605.0111 xxxx nu === +−+−α )  . 
 
Because 35.15 is not an integer, interpolate between the 35th and 36th order statistics. Suppose 

=12 ppb and =13 ppb. Then the 95% upper prediction limit is estimated to be: ( )35x ( )36x
 
 ( ) ( ) ( )( ) ( ) 15.12121315.01215.0 353635 =−+=−+ xxx ppb. 
 
If the result of the next observation were 8 ppb, we could conclude that arsenic concentration has 
not increased with 95% confidence. 
 
 K-5.3.2.  Discussion.  Exact confidence for using various order statistics from a sample to 
create nonparametric prediction intervals and limits can be calculated using the methods de-
scribed in Hall et al. (1975). Their calculations expand to cover prediction intervals to contain k 
of m future observations instead of just a single future observation. 
 
 K-5.3.2.1.  For small datasets, the method presented in Paragraph K-5.3.1 will require an 
order statistic that is smaller than the smallest observation in the dataset (for a minimum) or lar-
ger than the largest (for a maximum). In this situation, a nonparametric UTL or UPL is typically 
constructed using the minimum or maximum value of the set of observations. With high prob-
ability, the tolerance interval is designed to miss only a small percentage of the observations that 
arise from the same population as the data used to develop the tolerance limit. The coverage 
probability for the tolerance interval can be reported as either a minimum or an average value 
because, typically, we can only specify that the coverage probability of the interval exceed some 
level of confidence. We will use the average value. Given n measurements, using the maximum 
measurement as the UTL yields an average confidence of  
 

 %100
1+n

n .  
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Table K-5. 
Estimate of  for i = 1, 2 … n = 36 )(̂iθ

i Mean θ̂  iJ  ˆ( )iJ J θ−  2ˆ( ( )iJ J )θ−  
1 4.67 2.8 –1.82 3.31 
2 4.67 2.95 –1.67 2.78 
3 4.66 3.15 –1.47 2.16 
4 4.66 3.21 –1.41 1.98 
5 4.65 3.56 –1.06 1.12 
6 4.65 3.68 –0.94 0.88 
7 4.64 3.91 –0.71 0.50 
8 4.64 3.96 –0.66 0.43 
9 4.64 4.01 –0.61 0.37 

10 4.63 4.11 –0.51 0.26 
11 4.63 4.14 –0.48 0.23 
12 4.63 4.22 –0.40 0.16 
13 4.63 4.25 –0.37 0.14 
14 4.62 4.48 –0.14 0.02 
15 4.62 4.53 –0.09 0.01 
16 4.62 4.6 –0.02 0.00 
17 4.62 4.62 0.00 0.00 
18 4.62 4.72 0.10 0.01 
19 4.62 4.72 0.10 0.01 
20 4.62 4.73 0.11 0.01 
21 4.61 4.76 0.14 0.02 
22 4.61 4.8 0.18 0.03 
23 4.61 4.81 0.19 0.04 
24 4.61 4.85 0.23 0.05 
25 4.61 4.94 0.32 0.10 
26 4.61 5.09 0.47 0.22 
27 4.60 5.1 0.48 0.23 
28 4.60 5.12 0.50 0.25 
29 4.60 5.17 0.55 0.30 
30 4.60 5.27 0.65 0.42 
31 4.59 5.51 0.89 0.79 
32 4.58 5.81 1.19 1.42 
33 4.58 5.91 1.29 1.67 
34 4.58 5.99 1.37 1.88 
35 4.57 6.19 1.57 2.47 
36 4.56 6.6 1.98 3.93 

 
 K-5.3.2.2.   Thus, at least 19 samples are necessary to achieve 95% mean coverage. Addi-
tional information on constructing nonparametric tolerance and prediction limits can be found in 
EPA 68-W0-0025.  
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 K-5.3.2.3.  A prediction limit involves the confidence probability associated with predict-
ing that the next single observation will fall below the upper prediction limit, and is the same as 
the expected (mean) coverage of a similarly constructed UTL. Note that this is a special case for 
nonparametric prediction limits for the next single observation, not a general result. Furthermore, 
it can be shown that the probability of having k future samples all fall below the upper nonpara-
metric prediction limit is )/()1( knn +=−α  (i.e., the maximum value is the [  up-
per prediction limit for k future measurements). Table B-11 in Appendix B lists these confidence 
levels for various choices of n and k. The false positive rate associated with a single prediction 
limit can be computed as one minus the confidence level. An example calculation follows in 
Paragraph K-5.3.3. 

] %100)/( knn +

 
 K-5.3.2.4.  Balancing the ease with which nonparametric upper prediction limits are con-
structed is the fact that, given fixed numbers of original samples and future sample values to be 
predicted, the maximum confidence level associated with the prediction limit is also fixed. To 
increase the level of confidence, the only choices are to: i) decrease the number of future values 
to be predicted at any testing period, or ii) increase the number of original samples used in the 
test. Table B-11 of Appendix B can be used along these lines to plan an appropriate sampling 
strategy so that the false positive rate can be minimized and the confidence probability maxi-
mized to a desired level. 
 
 K-5.3.3.  Example of a Nonparametric Prediction Limit for the Next k Observations.  A 
prediction limit for arsenic concentration at k = 2 points in the future is desired. Arsenic concen-
tration at three background wells was measured once each month for 6 months to yield 18 obser-
vations. As 9 of the 18 observations were non-detects, a nonparametric prediction limit will be 
calculated. The maximum detected result was 12 ppb, so this will be used as the upper prediction 
limit. Because n = 18 and k = 2, the probability of both future observations falling below the up-
per prediction limit of 12 is  
 

 %90%
218

18100%100 =
+

=
+ kn
n .  

 
Thus 12 ppb is a 90% upper prediction limit for two future observations. The results of the two 
future observations were 8 and 14 ppb. As one of the new observations exceeds 12 ppb, we can 
conclude that arsenic concentration has increased with 90% confidence. 

 
 K-5.4.  Nonparametric Confidence Intervals for Percentiles.  A nonparametric confidence 
interval is based on an actual sample result and does not rely on any distributional assumptions. 
The nonparametric confidence interval is generally wider and requires more data than the corre-
sponding normal distribution interval, and so the parametric distribution intervals should be used 
whenever it is appropriate. When n ≤ 20, the nonparametric confidence interval is calculated us-
ing the binomial distribution.  
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 K-5.4.1.  Given a set of measurements, x1, x2,...xn, to calculate a nonparametric confidence 
interval for the quantile Xp, it is necessary to first order the values of xi so that x(1) < x(2) <...< x(n). 
Therefore, the smallest value of the data set is x(1) and the largest is x(n). (Note the distinction be-
tween x1 and x(1); the former is the first measured value of the data set and the latter is the small-
est value of the data set.) A two-sided nonparametric confidence interval for a quantile Xp will be 
of the form: 
 
  )()( bpa xXx ≤≤
 
where the probability that  lies in the above interval is pX α−1 : 
 

 α−=≤≤ 1)( )()( bpa xXxP  . 
 
 K-5.4.2.  The ath largest value x(a) and bth largest value x(b) of the data set (i.e., the numerical 
values of a and b that satisfy the above equation) are determined using the binomial distribution 
(as will be discussed below). Unfortunately, because the values are selected from a finite set of n 
ordered values { x(i) }, confidence limits are essentially being constructed for a discrete rather 
than a continuous variable. In general it will not be possible to select a and b so that the above 
probability is exactly equal to α−1 . Therefore, for the two-sided α−1  confidence interval, a 
and b are selected so that: 
 
 α−≥≤≤ 1)( )()( bpa xXxP . 
 
 K-5.4.3.  Similarly, for an upper one-sided confidence interval for a percentile Xp it is de-
sirable to select b so that: 
 
 .1)( )( α−≥≤ bp xXP   
 
Find the lower bound  by selecting the value of a so that:  )(ax
 

2/),,1( α≤− pnaBin  and 2/),,( α>pnaBin   
 
where denotes the probability for the cumulative binomial distribution—the prob-
ability that an event with probability p of occurrence will happen less than or equal to k times out 
of n trials: 

),,( pnkBin
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 K-5.4.4.  More information on the binomial distribution can be found in Appendix F. The 
values of n and p are known. Table B-1 of Appendix B lists values of the cumulative binomial 
distribution and lists various values of k for fixed values of p and n. Because p (the quantile) and 
n (the number of samples) are known, we can use Table B-1 to find the appropriate value of k. 
For example, one could start with 0=k , then 1=k

),,
, and so forth until  is the smallest 

value that satisfies the inequalities
1−= ak

2/1( α≤− pnaBin and 2,( /), α>pnaBin . The upper 
bound  is obtained by determining the smallest value of b that satisfies the relationship )(bx
 
 α−≥−−− 1),,1(),,1( pnaBinpnbBin . 
 
 K-5.4.5.  For example, let us calculate the two-sided nonparametric confidence limit for the 
75th percentile (p = 0.75) for the 90% level of confidence ( 1.0=α ) for 16=n  so that: 
 
  .9.0)( )(75.0)( ≥≤≤ ba xXxP
 
From Table B-1,  
 
 05.02/0271.0)75.0,16,8( =<= αBin  
 
and  
 
 05.02/0796.0)75.0,16,9( =>= αBin .  
 
Therefore, . Because 9=a
 
 9.019094.00271.09365.0)75.0,16,8()75.0,16,14( =−>=−=− αBinBin  
 
the value for . Therefore, the 90% confidence interval for the 75th percen-
tile is .  

151141 =+=+= kb
)15(75.0 xX ≤)9(x ≤

 
 K-5.4.6.  Similarly, find the one-sided )%1(100 α− upper confidence limit of , so that 
the smallest value of b satisfies the equation 

pX

 
 α−≥−=≤ 1),,1()( )( pnbinBxXP bp . 
 
 K-5.4.7.  Once b  is found from Table B-1, the  largest value, x(b), establishes the upper thb

%100)1( α− confidence limit of Xp. For example, if ,5.0,20 == pn  and ,05.0=α  
 
  and 94.0)5.0,20,13( =Bin .98.0)5.0,20,14( =Bin  
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 K-5.4.8.  Because .151141,95.0)5.0,20,14( =+=+=> kbBin  The 15th largest value of 
the data set, , is at least the 95% upper confidence limit of the 50th percentile: 

 
)15(x
95.0≥ .)( )15(5.0 ≤ xXP

 
 K-5.4.9.  If , the two-sided 20>n )%1(100 α− confidence interval can be 
calculated using a normality approximation so that 

)()( bpa xXx ≤≤
.1))()(( α−≈≤≤ bpa xXxP  

 
 K-5.4.10.  Calculate the following 
 
 )1(2/1 pnpZnpa −−= −α   
 
and 
 
 )1(2/1 pnpZnpb −+= −α  
 
where the percentile p  is the  quantile for the standard normal distribution obtained from 
Table B-15 of Appendix B. Round a an b to the nearest whole numbers and find the correspond-
ing order values and  

Z thp

)(ax .)(bx
 
 K-5.4.11.  For the one-sided upper )%1(100 α−  confidence interval , where )(bp xX ≤

( ) α−≈≤ 1)(bp xXP , calculate 
 
 )1(1 pnpZnpb −+= −α . 
 
Round to the nearest whole number and find  .)(bx
 
 K-5.4.12.  Maximum detected values can be used to make inferences about percentiles. In 
particular, assume that a set of detected values are ranked from lowest to highest so that x(n) de-
notes the maximum value. Also assume that the maximum detected value is less than some 
threshold concentration (i.e., a risk-based limit) C: x(n) < C. It can be shown that, under these cir-
cumstances, if Xp is the p100th percentile of X, then  
 
  and  . n

p pCXP −≥≤ 1)( n
p pCXP ≤> )(

 
pX  is less than the threshold C with at least  confidence. α−=− 11 np

 
 K-5.4.13.  To find the value of n needed to achieve the desired level of confi-
dence %100)1( α− , n must be such that 
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 . α≤np
 
Therefore, the p100th percentile, Xp, will be less the decision limit C with at least %100)1( α−  
confidence if the maximum detected value is less than C (i.e., Cx n <)( ) and  
 
 )(/)( pLnLnn α≥ . 
 
 K-5.4.14.  If, for example, 90.0=p  and 05.0=α , then . If 29 samples are col-
lected and the maximum value is less than C, then one can be at least 95% confident that the 90th 
percentile is less than C. 

4.28≥n

 
 K-5.4.15.  The maximum is a non-parametric one-sided upper tolerance limit. Given a set 
of n observed measurements, there is (1 – α)100% = (1 – pn)100% confidence that at least 
p100% of future measurements will be less than the maximum. A two-sided tolerance interval to 
contain at least a proportion p of future measurements may be constructed using the minimum 
and maximum of a set of n observed measurements. There is  
 
 ( ) ( ) %100)1(1%1001 1−−−−=− nn ppnpα  
 
confidence that at least p100% of future measurements will fall between the minimum and maxi-
mum of set of n observed data points. For example, if n =50 and p = 0.95, then there is 72% con-
fidence that at least 95% of future measurements will fall between the minimum and maximum. 
 
K-5.  Statistical Confidence Interval for Proportions.  Data from a binomial distribution are 
composed of only two responses—“pass” or “fail.” The population proportion, P, is based on ei-
ther the passing proportion or the failing proportion. The following discussion will (arbitrarily) 
define the proportion, p, as the proportion of failures. An estimate of this proportion can be de-
rived by p = k/n where k is the number of failures out of n samples. For example, in environ-
mental applications p could represent the proportion of results from samples below some 
decision limit, C. From this information we would like to estimate an interval, (PL, PU), which 
contains the true proportion, P, of the distribution that is less (or greater) than C. The binomial 
distribution is a discrete distribution and so statistical intervals are approximate and tend to be 
conservative (Hahn and Meeker, 1991). The most frequent statistical interval calculated for a 
proportion is the confidence interval, so only it is presented here. 
 
 K-5.1.  Discussion.  The equation for a conservative two-sided 100(1 – α) % confidence 
interval for a proportion is the following: 
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where Fγ,m,n is the γ100th percentile of the F distribution (Table B-7 of Appendix B) with m and n 
degrees of freedom. The lower limit, PL, is defined to be 0 if k = 0, and the upper limit, PU, is de-
fined to be 1 if k = n (Hahn and Meeker, 1991). 
 
 K-5.1.1.  Likewise, a one-sided %100)1( α− LCL for a proportion would be: 

 

 

⎭
⎬
⎫

⎩
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Fkn

p
kkn
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2,222,1)1(
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while a one-sided %100)1( α− UCL for a proportion would be: 
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 K-5.1.2.  If a large number of samples are available, these confidence intervals can be ap-
proximated. However, two restrictions apply to the data set: first, np ≥ 5 and second, n(1 – p) ≥ 
5. This approximated confidence interval is based on the normal distribution because when these 
two restrictions apply, data are approximately normally distributed. The equation for the ap-
proximated confidence interval is: 

 

 [ ]
n

ppZppp UL
)1(, 2/1

−
±= −α  
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where  is the  percentile from a standard normal, n is the sample size, and 2/1 α−Z th100)2/1( α− p  
is the sample proportion (Devore, 1987). The one-sided upper confidence limit would be found 
by replacing 1 2/α−  with α−1  as follows: 
 

n
ppZppU

)1(
1

−
+= −α  . 

 
 K-5.2.  Example of a Confidence Limit for a Proportion.  Groundwater concentrations of 
gasoline at a site are compared to a regulatory threshold of 35 micrograms per liter (μg/L). Sup-
pose out of 90 results, 11 of the samples have concentrations that exceed this regulatory thresh-
old, so the proportion of samples with detected concentrations exceeding the threshold is 

.  1222.090/11 ==p
 
 00.111222.090 =×=np  
 
 . 00.79)1222.01(90)1( =−×=− pn
 
As both np and n(1 – p) are greater than or equal to 5, the large sample normal approximation 
can be used 
 

 ( ) 078.0
90

1222.011222.0282.11222.0)1(
1 =

−
−=

−
−= − n

ppZppL α  

 
where Table B-15 of Appendix B is used to find the critical value =1.282. Because  ex-
ceeds 0.05, we can accept that more than 5% of the concentrations of gasoline in groundwater at 
the site exceed the regulatory threshold as we conclude also in Appendix L, Paragraph L-8.2. 

90.0Z Lp

 
K-6.  Statistical Intervals for the Poisson Distribution (Number of Occurrences).  Data from 
a Poisson distribution are composed of only two mutually exclusive responses—“pass” or “fail” 
s—when the probability of one of the responses is small. Poisson distributions are common when 
counting the number of pass or fail occurrences over a time interval or the number of detections 
when a set of measured concentrations consists mostly of non-detects. The population rate of oc-
currence, μ, also called the mean rate of occurrence, is either based on the passing rate or the 
failing rate. For this document, the rate of occurrence of the rare event is called the rate of “fail-
ure.” The Poisson distribution is a discrete distribution and so statistical intervals are approxi-
mate and tend to be conservative (Hahn and Meeker, 1991). An estimate of this rate of 
occurrence can be derived by:  
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 nk /ˆ =μ  
 
where k is the number of failures out of n samples. 
 
 K-6.1.   Confidence Interval for the Mean Occurrence Rate.  A two-sided %100)1( α−  
confidence interval for the mean occurrence rate is the following: 
 

 [ ]
⎥
⎥
⎦

⎤

⎢
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⎣

⎡
= +−

nn
kk

UL

2
22,21

2
2,2 5.0

,
5.0

ˆ,ˆ αα χχ
μμ  

 
where is the 2

,νγχ γ 100th percentile of the chi-square distribution (Table B-2 of Appendix B) with 
v degrees of freedom.  
 
 K-6.1.1.  A one-sided lower or upper %100)1( α−  confidence limit can be obtained by re-
placing 2

2,2 kαχ  with  for a lower confidence limit or replacing 2
2, kαχ 2

22,21 +− kαχ  with  for 
an upper confidence limit (Hahn and Meeker, 1991). 

2
22,1 +− kαχ

 
 K-6.1.2.  If a large number of samples is available (generally, if ), this confidence 
interval can be approximated. This approximated confidence interval is based on the normal dis-
tribution because, as the sample size increases, the data’s distribution tends towards normality. 
The equations for the approximated confidence interval are: 

20>n

 

 [ ]
n

ZUL
μμμμ α
ˆˆˆ,ˆ 2/1−±=   

 

where  is the  percentile from a standard normal, n is the sample size, and 2/1 α−Z th100)2/1( α−
μ̂  is the mean sample rate of failure ( nk /ˆ =μ  when k is the number of failures in n samples) 
(Hahn and Meeker, 1991). 

 
 K-6.2.  Upper Tolerance Limit.  A Poisson tolerance interval, with p100% coverage and 

%100)1( α−  confidence, is calculated based on the directions given in Paragraph K-6.2.1, fol-
lowed by an example in Paragraph K-6.2.2. 
 
 K-6.2.1.  Directions for Calculating a Poisson Tolerance Interval with p100% Coverage 
and %100)1( α−  Confidence.  Compute the sum of the Poisson counts of n samples: 
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  . ∑
=

=′
n
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ixT
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This is the sum of the detected values and one-half the sum of all the non-detected values. 
 
 K-6.2.1.1.  Find the probable rate 
 

 2
22,12

1
+′−= Tn αχμ   

 
where  is the  percentile of the chi-squared distribution with 2

22,1 +′− Tαχ th100)1( α− 22 +′= Tν  
degrees of freedom. Table B-2 of Appendix B contains a table of critical values for the chi-
square distribution.  
 
 K-6.2.1.2.  Compute the p100th percentile of the Poisson distribution with mean rate μ, by 
finding the least positive integer k such that 
 
 .  μχ 22

22,1 ≥+− kp

 
As above, the quantity 2k + 2 represents the degrees of freedom of the chi-squared distribution. 
The quantity k itself is the upper tolerance limit (UTL) for the Poisson distribution. In other 
words, for the smallest value of k for which  
 

 2
22,1

2
22,1

1
+′−+− ≥ Tkp n αχχ  

 
p100% of the measurements will be less than k with %100)1( α− confidence. If any sample ex-
ceeds the UTL, k, then there is significant evidence that this sample is different from the samples 
used to develop the UTL. 
 
 K-6.2.2.  Example of Calculating a Poisson Tolerance Interval with p100% Coverage and 

%100)1( α−  Confidence.  A tolerance interval with 95% confidence (α = 0.05) and 95% cover-
age (p = 0.95) is desired for 1,1-dicholorethene in groundwater at Site B. The background well 
values in Table K-6 were obtained. These data have more than 90% non-detects and the number 
of samples n = 90. 
 
 K-6.2.2.1.  Calculate the sum of the Poisson counts: Sum the detections and to this value 
add one half the sum of the non-detects (one half the detection limit is being used for each non-
detect). 
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 25.11)81.463.2138.0111.0()1236.7(5.0 =++++×=′T  
 
 22 +′= Tν = 2 (11.25) + 2 = 24.5 ≈ 25 
 

 209.0
902

1
2
1 2

25,95.0
2

22,1 =
×

== +′− χχμ α Tn
 

 
where  using Table B-2 of Appendix B. 65.372

25,95.0
2

22,1 ==+− χχ α T

 
 K-6.2.2.2.  So, we need to find the smallest value of k such that ; that is, the 
value of k such that . Table B-2 of Appendix B shows that the smallest value 
number of degrees of freedom, v = 2k + 2, that satisfies the above equation is v = 4. Since 4 = 2k 
+ 2, k = 1.0.   

μχ 22
22,1 ≥+− kp

418.02
22,05.0 ≥+kχ

 
k df 2

0.005χ  
0.5 3 0.3518 
1 4 0.7107 
1.5 5 1.145 

 
 K-6.2.2.3.  If any site groundwater sample exceeds the UTL of 1.0 μg/L derived from the 
background wells, then there is significant evidence that contamination at the site is elevated 
with respect to background.  
 
 K-6.2.3.  Upper Prediction Limit.  To estimate a prediction limit using the Poisson model, 
the upper limit is estimated for an interval that will contain all of k future measurements of an 
analyte with )%1(100 α− confidence, given n previous measurements. The directions to calculate 
such a prediction limit are provided in Paragraph K-6.2.3.1 and followed by an example in Para-
graph K-6.2.3.2. 
 
 K-6.2.3.1.  Directions for Estimating a Prediction Limit Using the Poisson Model.  Calcu-
late T ′ , the sum of the Poisson counts of n samples (e.g., for the background data set), as defined 
in Paragraph K-6.2.1.  
 
 K-6.2.3.1.1.  Calculate , the greatest total Poisson count for the next k samples (e.g., for 
the study area data set) at some level of confidence, 1 – α using the following equation:   

*
kT

 

 ( )
4

1
2

22
* tnT
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n
t

n
TTk ++′++

′
=  
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where  is the upper 1,/1 −−= nktt α %100)/1( kα− percentile of the Student’s t-distribution with n – 
1 degrees of freedom, in Table B-23 of Appendix B.  
 
Table K-6. 
Background Wells 
Well Location Result (µg/L) DL (µg /L) Well Location Result (µg /L) DL (µg /L) 
Site B-MW01  0.0819 SiteB-MW02  0.144 
SiteB-MW01  0.102 SiteB-MW02  0.0715 
SiteB-MW01  0.102 SiteB-MW02  0.0715 
SiteB-MW01  0.0715 SiteB-MW02  0.145 
SiteB-MW01  0.0436 SiteB-MW03  0.144 
SiteB-MW01  0.0436 SiteB-MW03  0.0715 
SiteB-MW01  0.122 SiteB-MW03  0.0715 
SiteB-MW02  0.0819 SiteB-MW03  0.0715 
SiteB-MW02  0.102 SiteB-MW04  0.144 
SiteB-MW02  0.102 SiteB-MW04  0.0715 
SiteB-MW02  0.0715 SiteB-MW04  0.0715 
SiteB-MW02 0.111  SiteB-MW04  0.0715 
SiteB-MW02  0.0436 SiteB-MW05  0.144 
SiteB-MW02  0.122 SiteB-MW05  0.0715 
SiteB-MW03  0.0819 SiteB-MW05  0.0715 
SiteB-MW03  0.102 SiteB-MW05  0.0715 
SiteB-MW03  0.102 SiteB-MW06  0.0715 
SiteB-MW03  0.0715 SiteB-MW06  0.0715 
SiteB-MW03  0.0436 SiteB-MW06  0.0715 
SiteB-MW03  0.0436 SiteB-MW06  0.145 
SiteB-MW03  0.122 SiteB-MW01  0.116 
SiteB-MW04  0.0819 SiteB-MW01  0.116 
SiteB-MW04  0.102 SiteB-MW01  0.0492 
SiteB-MW04  0.102 SiteB-MW01  0.0492 
SiteB-MW04  0.0715 SiteB-MW02  0.116 
SiteB-MW04  0.0436 SiteB-MW02 0.138  
SiteB-MW04  0.0436 SiteB-MW02  0.0492 
SiteB-MW04  0.122 SiteB-MW02  0.0492 
SiteB-MW05  0.0819 SiteB-MW03  0.116 
SiteB-MW05  0.102 SiteB-MW03  0.116 
SiteB-MW05  0.102 SiteB-MW03  0.0492 
SiteB-MW05  0.0715 SiteB-MW03  0.0492 
SiteB-MW05  0.0436 SiteB-MW04  0.116 
SiteB-MW05  0.0436 SiteB-MW04  0.116 
SiteB-MW05  0.122 SiteB-MW04  0.0492 
SiteB-MW06  0.0819 SiteB-MW04  0.0492 
SiteB-MW06  0.102 SiteB-MW05  0.116 
SiteB-MW06  0.102 SiteB-MW05  0.116 
SiteB-MW06  0.0715 SiteB-MW05 2.63  
SiteB-MW06  0.0436 SiteB-MW05  0.0492 
SiteB-MW06  0.0436 SiteB-MW06  0.116 
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Well Location Result (µg/L) DL (µg /L) Well Location Result (µg /L) DL (µg /L) 
SiteB-MW06  0.122 SiteB-MW06  0.116 
SiteB-MW01  0.144 SiteB-MW06 4.81  
SiteB-MW01  0.0715 SiteB-MW06  0.0492 
SiteB-MW01  0.0715    
SiteB-MW01  0.0715    

 
 K-6.2.3.1.2.  If the sum of Poisson counts for the next k samples is greater than the upper 
prediction limit , then there is significant evidence of a difference in the new samples, com-
pared to previous samples. 

*
kT

 
 K-6.2.3.2.  Example of Estimating a Prediction Limit Using the Poisson Model.  Suppose a 
prediction limit for the next two observations with 99% confidence is desired for 1,1-
dicholorethene from Site B with the following background wells. NOTE: These data have more 
than 90% non-detects. (See data table in Paragraph K-6.2.2.) 
 
 K-6.2.3.2.1.  Calculate the sum of the Poisson counts:  
 
 25.11)81.463.2138.0111.0()1236.7(5.0 =++++×=′T  
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where n = 90 and 639.289,995.0)190(,2)01.01(1,/1 === −−−− ttt nkα  using Table B-23 of Appendix B 
and linear interpolation. 
 
 K-6.2.3.2.2.  To test the upper prediction limit, if the sum of the Poisson counts for the next 
k samples (k = 2) is greater than  (1.10), then there is significant evidence the contamination 
in the site wells is elevated relative to the background wells. 

*
kT
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